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An integrated single-step design approach to the synthesis of a mechanical device

and an active controller is presented for slew maneuvers of flexible space structures.

A mechanical device consists of a noncircular gear pair that acts as a varying gear
ratio transmission between an electro-mechanical actuator and a flexible structure.

Such a system has been introduced as an analytical application in minimizing flexural

vibrations in the slewing maneuver of flexible space structures such as large solar

panels and satellites in space. Only a simple regulator-type feedback controller is

called for to control this complex electro-mechanical-and-structural system and the

purpose is to design this complex system in an integrated procedure to achieve low

flexural vibrations of the structure. Numerical simulations of the slewing control
tasks for a planar articulated double-beam structure are presented.

1 Introduction

Interest in orbiting very large space structures has resulted
in the need to maneuver and control flexible structures. This

need is driving research into an integrated approach that in-

corporates mechanism synthesis and system control design so

that the maneuvering characteristics of large flexible space

structures may be improved. Several large flexible space struc-

tures such as the Mobile Satellite, the Large Deployable Re-
flector, and the Freedom Space Station form the basis for

much of present research into the control of flexible space
structures.

In a slewing maneuver of a flexible structure driven by an

actuator under regulator feedback control, the structural dy-

namic behavior has been extensively investigated [ 1-7]. In Refs.

1-4, 6, and 7, the regulator control law has been used for the

driving actuator due to the simplicity of such a choice. How-

ever, the resulting flexural vibrations of the flexible structure

are tunable only through the feedback gains, and are therefore

not entirely satisfactory. Direct actuating control on the flex-

ural vibrations on the other hand will not result in a simple

regulator-type feedback controller and results in a very com-

plex control implementation such as adaptive control. To com-

pensate for the structural flexibility in response to external

disturbance while enhancing the reliability, the concept of

adaptive structures [8, 9] has been adopted and applied to

space construction. However, very sophisticated sensory and

control techniques are needed in conjunction with the smart

structures to carry out their designated missions.

It may be noted that much of current research in control
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theory has been approached from the perspective that the me-

chanical-structural subsystem is a given, and a controller is

then synthesized to accomplish some given objective. On the

other hand, the mechanical and structural engineers have looked
at the mechanical-structural design as the final design goal and

have left the control issues to the control engineers who come

after them. Such sequential design procedures, though, result

in "optimal" subsystems within the respective disciplines, and
do not result in a reliable, efficient, or cost effective system.

As such, the resulting system can be improved if the mechanical

and the control design processes are integrated. With such a
philosophy, it is then possible to enable trade-offs in com-

plexities between the mechanical-structural aspects of the sys-
tem with that of the controller.

The objective of this article is to integrate the mechanical

and control aspects of the design along with a structural system
such that a simple and more robust regulator-type feedback

controller may be used. It can be anticipated that in this process

the mechanical subsystem would become a little more complex.

Many questions arise out of such an approach. First, it needs
to be determined if the increase in complexity in the mechanical

subsystem will result in a greater reduction in the complexity

of the control system. Secondly, there is the question of whether

it is indeed possible to bring about such interdisciplinary design

in an integrated manner. Finally, the performance of the new

modified system needs to be shown to be superior to that of

the system based on the classical approach.

2 Description of System

The problem of suppressing the flexural vibrations of flexible

structures has inspired the introduction of a simple mechanical
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device in conjunction with control law, for tuning the slewing
characteristics of a flexible structure for minimum flexural
vibrations. An investigation into its applicability and its con-
current design is the subject that will be developed in this
article.

Several gearing devices such as gear trains and harmonic
devices have been used in transmitting the actuator torques
for maneuvering flexible structures [10-16]. All these trans-
mission devices essentially exhibit constant gear ratios during
a given operation. This is because circular gears always result
in nonvarying gear ratios between the input and output shafts
of the transmission because of the constant mechanical ad-

vantage.
Based on a given desired maneuvering schedule, it is con-

ceivable that varying gear ratio may help in improving the
performance of a slew maneuver. By using such a varying gear
ratio, the characteristics inherent to regulator-type controllers
at the start of a maneuver can be tuned in such a way that the
high initial input torque needed can be reduced. Moreover,
the resulting output angular velocity can be regulated in such
a way as to reduce the high initial rate-of-change that sets off
undesirable vibrations. The slewing maneuver of a flexible
articulated double-beam structure is investigated by incorpo-
rating noncircular gears to perform this positioning control
task. These noncircular gears are installed at the junction be-
tween the motor and the flexible structure. Slewing control
task of this flexible structure will be modelled and simulated,
and the flexural vibrations reduced by simultaneously taking
into account the profile of the noncircular cylinders as well as
output feedback control law, at the design stage. We shall
begin with a brief description on noncircular gear design to
serve as background.

2.1 Mechanical Device: Noncircular Gearing [17]. Many
of the existing articles on noncircular gearing [10-16] empha-
sized design for producing cyclically varying angular velocity,
or for generating precise nonlinear functions from a mecha-
nisms viewpoint. A concurrent approach that incorporates the
design of such a device in conjunction with feedback control
has not been attempted. Moreover, the incorporation of a
noncircular mechanical element permits the simplification of
the control implementation and it is this objective that forms

Fig. 2 Configuration of noncircular gears

the basis of this investigation. Figure I shows the configuration
of a pair of noncircular gears driven by a motor to rotate a
fexible beam. Such a noncircular gearing device consists of:

(1) a pair of noncircular cylinders (G_, Gz,),
(2) two pairs of thin metal bands (BI, B2),
(3) two pairs of clamps (C1, C2), and
(4) a fixed arm to hold the two cylinders at a constant distance

apart.

The system features a pair of noncircular cylinders, around
which two pairs of thin metal bands wrap. These two specially
designed cylinders G1 and G2 with noncircular profiles, meshed
through the use of two pairs of thin metal bands B1 and B2 as
shown in Fig. 1. The two noncircular cylinders are wrapped
in opposite directions, and are then tightly clamped by two
clamps Ca and C2 at the two ends of the metal bands. When
the profiles of the two noncircular cylinders are properly de-
signed, pure rolling contact exists between the two cylinders.
A fixed arm, which is grounded, is used to hold the two cyl-
inders together such that the center distance always remains
constant. The varying gear ratio due to the noncircular profiles
produces varying output-to-input speeds. This speed variation
tunes the kinematic characteristics of the flexible space struc-
tures during rapid slewing maneuvers while being controlled
by a regulator-type feedback controller. Pure rolling contact,
and hence low friction between the noncircular cylinders, re-
duces stiction nonlinearities to the system. The shear force,
normally taken by the gear teeth, is taken by the tension in
the bands (B1 and B2).

Figure 2 shows the cross section of the noncircular gears.
Two noncircular gears O_and 02 that are kept apart at a
constant center distance O_O2 = C have the instantaneous
pitch radii denoted by r_ and r:, respectively. Assume that
gears O_ and O: are the driving and the driven gears, respec-
tivety, with the corresponding input and output angles, 0_ and
02. The synthesis of their profiles is presented in Appendix 1.
The pitch curves of the two noncircular cylinders are given by
Eqs. (1.2) and (I.3) in the Appendix. To simplify the specifi-
cation of the varying gear ratio, a hyperbolic gear ratio function
is used and is defined as [10-15]:

_2 C2

Ng(02) _I ¢1+02 (1)

where c_ and c2 indicate two parameters which can be deter-
mined by providing two end points on the hyperbolic gear ratio
function. As an example, the pitch curves of the noncircular
cylinders based on the hyperbolic function given by Eq. (l)
above, is shown in Fig. 3(a) for the range of 0 deg-90 deg of
output rotation, and is plotted in Fig. 3(b). The synthesis
process towards arriving at the pitch curves for a hyperbolic
gear ratio function as shown in Fig. 3 will be discussed below.

During the slewing control process, the noncircular gears
characterized by a hyperbolic gear ratio function given by Eq.
(1) will transform the output angular displacement and velocity
to behave in such a way that the flexural vibrations are sup-
pressed. The hyperbolic function in Fig. 3(a) may be specified
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with the following initial parameter values: c_ = r/10, c z =
7r/5, and C = 10. The pitch radii of the two noncircular

cylinders can then be found from Eq. (1.2):

C Ng (O2) C

rl l+Ng(02)' rz 1 +Ng(0:) (2)

From Eq. (I.3), the input angle 01 of the driving cylinder can

be computed:

O_= qO: + (3)

Plots of the instantaneous pitch radii q (01) and r2 (02) in polar

coordinates directly confirm whether the requirements of con-

vexity are adhered to. Based on the hyperbolic gear ratio func-

tion shown in Fig. 3(a), the pitch curves of the two noncircular

cylinders are determined and shown in Fig. 3(b). The convex-

ities of the two pitch curves confirms the feasibility of the

hyperbolic gear ratio function for generating the profiles of

these noncircular cylinders.

2.2 Actuator Dynamics. The actuator shown in Fig. 1 is

directly connected to one of the noncircular gears. A step-

down gear box may be built-in into the actuator to propor-

tionally magnify the varying noncircular gear ratio if so needed.

The motor may be modelled by a standard armature circuit

which is governed by the following differential equation:

[_ K,Kb'_ K,

+ +-Z:) +'°=geo (4)
where J_, denotes the motor inertia; C, the viscous drag coef-

ficient; Kt the motor torque constant; Ke the back-emf con-

stant; R o the armature resistance; 01 the output motor angle;

eo the applied voltage for the armature; and 7o the available
torque from the motor shaft. The available torque ¢o in Eq.

(4) is then transformed to the driving torque % through a step-

ZI

A .-k. v Noncircular Cylinders

B all t ."i_J_.__X. _"-

S

Gear Box Beam #2

Fig. 4 Configuralion of a planar flexible double-beam

down constant gear ratio Np, as well as the varying gear ratio

Ng of the noncircular gears so that:

_o= NgN:s (5)

where zs is the input torque to the flexible-link structure. Since

the gear ratio in Eq. (I.2) is varying, the input-output rela-

tionship between the driving and driven cylinders is governed
by a nonlinear transformation which can be shown to be:

1

-N2 (O:)

0

1

N_(02)
(6)

Substituting Eqs. (5) and (6) into Eq. (4), the output torque

rs to the structure is obtained and is expressed by:

C_. + KtKb

Kteo Ro oz+ S,_ [NgNpO, - NJVg0 2]
rs=Ra_VgNp (NgNp) 2 (Ng]qp) "

(7)

where the time rate-of-change of the gear ratio/Vg in Eq. (7)
can be computed from:

The input voltage across the actuator e_ in Eq. (7), is generated

according to the active feedback controller and the varying

noncircular gear ratio Ng, for driving the flexible beam and

for suppressing the flexural vibrations.

3 Dynamics of Flexible Systems Incorporating Non-

circular Gearing and Actuators

In this article, the dynamics of a planar articulated double-

beam structure, in conjunction with cylinder-type noncircular

gears will be investigated. A description of the closed-loop
regulation control system wilt also be described in Section 3.2.

3.1 Planar Flexible Articulated Double-Beam. In this

subsection, a derivation of the dynamic equation is presented
for a planar flexible double-beam of which the outer flexible

beam (#2) is articulated at the tip of the inner beam (#1) to

result in a flexible articulated double-beam structure as shown

in Fig. 4. The actuation for the two beams is accomplished in
a way that the first (inner) beam is driven by a motor via a
built-in gear train, while the second (outer) beam is manipu-

lated by another motor through a wire or tendon configuration
(see Fig. 4). Moreover, the second motor is built-in and con-
catenated axially to the output noncircular cylinder of the first
beam. These two flexible beams are modeled as the cantilever

beams of the same length L along the x-axis. Flexural vibrations
are permitted during the slewing motion of the arms. We begin
by expanding the deflection of the flexible beams in modal
form.
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Dynamic modeling of different flexible spacecrafts has been
conducted in [2, 7, 20-23] to implement the specific control

missions such as the slewing maneuver, deployment, and re-

trieval. Note that while there may be other methods for beam
modeling [20-23] the modal representation is deemed to be

sufficiently accurate and is very efficient for the purpose of

this investigation. Lagrange's method [18, 19] is now applied

to derive the dynamic equations of motion as follows. In Fig.

4, denote 0b I as the root angle of the first fexible beam and

0o2 as the root angle of the second beam, measured relative to
the local coordinates xl - Yl. Let the state vector _ be defined
as:

fq_= [ql l..... qlmj], and

= [G, o_, q_, q_]r; (q'_= [q21..... q_] (9)

where q_ (i = 1..... m_) are the general coordinates cor-

responding to the shape functions _b for discretization of the
bending deflection of the first flexible beam. The quantities

q2i (i = I ..... ra2) and _2 i are similarly defined for the fore-
beam [3, 4, 7, 19, 22, 23]. Accordingly to Eq. (9), an input
vector for the flexible articulated beams can be described by:

r= [rsl, rs:, 0 ..... 0] r (10)
m 1 + m 2

Assume that the structural damping of the two flexible beams

are negligibly small so that it will be excluded from the equa-

tions of motion. Then, application of Lagrange's equations

of motion [18, 19] to such an articulated structure leads to the

following dynamic equations:

M_ + K_ = r+f(tj, _) (11)

wheref(L _) represents a nonlinear force vector and is written

as:

f(_, g )= If1, f;, f3, fa] T; ) L2
f3 = - _- _/1(L )s01920_ 2 + SOb2_'l (L )h_q:d192

I
[ f, = - LsOezhzGJ0192+ h:002¢/((L) i_ d192

where h2 = _0z o_k2(xz)dx2 and s0192 = sin(GEL The inertia matrix
M in Eq. (19) becomes:

' ]411 __ pL3cO_ _ pL2_br(L ) _pr _ Lh_cOo 2

/2 _ 1 oL2g/r(L )c0192 _pr /M= 2

Symmetry OJ/ I (L ) _ rI(L ) + oL il h27/r (L )cOt,21
1

oLi: J

constant gear ratios Np) (i = 1,2) and two pairs of noncircular

gears (with varying gear ratios Ng) are utilized for the torque
transmission of the two beams. From Eq. (7), the applied beam

torques rsz and rs: in Eq. (10) can be replaced by:

K, iKoi

Kt i ea i C_'i + Ra i .

rSi=RailV_iNpi (N_.._oi) 2 019,

+ (N_Npf [N'eNop19'-N'N_019)' i = 1, 2 (15)

Note that, instead of the conventional motor's back-emf with

a constant gear ratio, the back-emf in Eq. (15) can be tuned

through the varying gear ratios Nsi (i = 1, 2).
Referring to the sensors, the rotational angle is measured

by a ten-turn rotary potentiometer, whereas the angular ve-

locity is calibrated by a tachometer. Strain gages are used to

sense the bending moments along two flexible beams. Suppose

two strain gages are placed along each flexible beam respec-

tively at positions :ca and x19. An output measurement equation

can be written in the following matrix form:

i= [eq, e_v eov ep2, eo_ (xo), eol (x19), eo2 (xa), eo: (xb)] r

= Diag[cq, ct 2, cot, co2, Cq, C,2] [0bl , 062 , 0191, Ob2 , 0 T, 0_] T

r a2G a2g'_,._ ]

..... (x,)/
c,,--c:, aw,, , / ' for i = l, 2

(13)

(16)

(12)

where I_ (i = 1, 2) are the moments of inertia of beams #1

(inner beam) and #2 (outer beam), Pl = J_ P xlI¢ll{.xl) .....

¢Jlml(Xl)]rdX_, P: = Jo_ O x_[_b:l(x2), • , _2m2(X2)]'dx2, and

coos = c0s(0192). Moreover, I_ and i2 are rn_ x mt and rn_ x

m: identity matrices, respectively. For the flexibility of the

double beams, the stiffness matrix is described by

K=Diag[O, 0, oLJh oLo:_]; _o_ = Diag[_ll LOlml],
and

Q_O2 = Diag[_2_, , W2rnz ]

(14)

wherew_i(i = 1..... mOand_z (] = 1..... m2) arethe

modal frequencies corresponding to shape functions ¢,b(xt)
and ¢,_,(x2), respectively.

As for the actuator dynamics, two idler gear boxes (with

where h is the half thickness of the flexible beams, and Cp,, c,_,

cs_ (i = 1, 2) are sensory conversion factors as defined in Ref.
7.

Substituting Eqs. (15) and (16) into Eq. (11) provides:

M_+C_ +K_ =BE.(t) +f(G _) (17)

where

M=M+Diag (NnNp:)2, (Ng2Np2)2, 0 .... 0 ,

mi+m 2
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[ KqKb_ Net

--+ C_._-1_ l

= Diag R°I

(NgxNpl) 2

B _

Kt I

0
o 1Kt 2

O( (m I . ra2) x 2) -I

Kt2Kb 2 IQg2
+

Ro z C_ - I,,, 2

_"_*p)'_'2_'2': ,0 ..... 0
m I +m 2

Equation (17) thus demonstrates a closed-loop system of a

flexible double-beam structure in conjunction with two pairs

of noncircul.ar gears. Note that the time rate-of-change of the

gear ratios Ng i (i = 1, 2), in damping matrix C of Eq. (17), is
given by Eq. (8). Furthermore, such a form as shown in Eq.

(17) facilitates the incorporation of output feedback control,

which wiU be the subject of discussion in the next subsection.

3.2 Regulator Feedback Controller For a Slewing Maneu-
ver. Regulator feedback controller is a linear optimal control
law to perform an asymptotically stable closed-loop system in
which each state is driven toward its final state under a con-

trolled process. Such a controller is simple and robust, and is
therefore very desirable for implementation into real appli-
cations. Slewing maneuvers of the double-beam flexible struc-

ture discussed earlier will be implemented. To be able to apply
the linear regulation control algorithm, the dynamics described

by Eq. (17) have to be linearized by neglecting the nonlinear
force vector f(_, _). This linearization still results in a stable
system as discussed in [3, 4, 7]. Then the linearized dynamic

equations can be transformed into a system of first order state

equations so that:

IE_ = - _;_, and
_ =_+_Eo; (_=c_

( 18)

where

[o i] [ol_= _,= ___i K _M_I _ , and B= __IB

The output feedback gain matrix G is determined by the fol-

lowing control analysis. The control criteria for this linear

regulation problem is to minimize a quadratic performance
index of the form:

SJ= [_rQ6+ErRE_]dt, Q_>0 and R>0 (19)
0

The output feedback gains can be determined by:

G=R-_BrP, P>O (20)

where the positive definite matrix P satisfies the following

algebraic Riccati equation:

_TP+P_,+CfQCy-PfiR-1Brpr=o (21)

In general, a successful slewing implementation must fulfill

two dynamic aspects: system stability and smooth continuous

behavior. The output feedback gain matrix G given by Eq.

(20) will ensure theasymptotical stability of poles in the dosed-

loop system [A-BGCf]. As it was discussed in Section 2.1,
the cylinder-type noncircular gears are capable of varying the

actuating torque to tune the slewing characteristics so that the
control effort may be reduced. Hence, the incorporation of

the noncircular gears and the feedback controller must be
considered together from the perspective of an integrated de-

sign process. In other words, in the slewing control of flexible

structures the flexural vibrations of the beam are reduced by

taking into account the profile design of the noncircular cyl-

inders as well as the output feedback controller gains, con-

currently at the design stage. An optimizer is employed to

determine not only the pitch curves of the noncircular cylin-

ders, but also the output feedback gains that will minimize the

vibrational amplitudes. This incorporation of noncircular gears

results in a controller design that is simpler and more robust,
for implementing a slew maneuver of flexible links in multi-

body flexible structures in the hostile space environment. Such

an integrated design approach will be presented in the following
section.

4 Integration of Feedback Controller Design With

Noncircular Gear Design

For an integrated mechanism and control design, the Gen-

eralized Reduced Gradient (GRG) method [24] is employed to

determine the optimal designs of noncircular gear ratios to-

gether with control gains for suppressing flexural vibrations

in a slew maneuver. This nonlinear programming approach

will iterate for a vector of design variables that will extremize

a given function, subject to some equality and inequality con-
straints.

Minimize: F(._) ;

Subject to:

where

._ = [Xl, X2 ' X3 ..... XN ] r _ R N (22)

'£) -> 0; k = 1 K
(23)

'/,_X) = 0; l = 1..... L

2 = a column vector of design variables,

N = total number of design variables,
F(2) = design criteria or objective function,

¢k(2) = Kinequality constraint functions,

_g_(2) = L equality constraint functions.

The hyperbolic parameters for the noncircular gear ratio

function along with the regulator control gains are assigned
as design variables to be determined by the GRG algorithm.

A quadratic cost function is developed for minimizing the

modal vibrational amplitudes. The dynamics of the flexible
structures may be expressed as a system of first-order state

equations. These first-order state equations become the equal-

ity constraint functions which must be satisfied in terms of

dynamic response as the optimal design variables are being

searched. Inequality constraint functions are specified to bound

the gear ratios or the control torques. The GRG algorithm
then numerically determines the design variables, which consist

of the parameters of noncircular gear ratio and the control

gains, so that the flexural vibrations of the structures are min-

imized during the slew maneuver. A close examination of each

of the elements necessary for the specification and definition

of this problem in the format of the GRG algorithm is given
below.

4.1 Design Variables. In addition to the parameters for

the noncircular gears and control gains, the design variables

of this optimization problem will include the states of vibra-

tional modes for the flexible structures. Assume that n multiple

structures are connected through n noncircular gear pairs with

rn flexible modes specified for the vibrational motion of each

948 / Vol. 116, SEPTEMBER 1994 Transactions of the ASME



structure in a slew maneuver. Then the design variable vector
is written as:

2= [c, g, e(k), e(k+ 1)] r (24)

where c is a 1 x 2n vector of parameters for noncircular gears,

= [[G(i, j),j = 1..... 2n(m + 1)],i = 1 ..... n]isa

1 x 2n(m + 1) vector of control gains, and e(k), e(k + 1) at
two different timest = k,k + 1 are 1 x 2n state vectors in

the first-order state equation at two sequential times. The num-

ber of design variables, i.e., N = 8n + 2m, is obtained by

summing the number of elements in Eq. (24).

4.2 Cost Function, Design variables in Eq. (24) will be
determined to minimize the cost function which is defined as:

F(x) = t {_i[O_i(k) - Oh?]z

i=l

i=1 j=l

where Obi(k) and b _i(k ) (i = 1, 2 ..... n) are the slewing angles

and angular velocities at time k; 0b? and 0hi k are the desired

states, and qi_(k) are the magnitudes of the vibrational modes

at time k. Th_ weighting factor for each slewing state is Ui (i =

1, 2, ... , 2n), and those for the magnitudes of the jth vi-

brational mode of the ith structure are denoted by _ij(i = 1,
2 ..... n; j = 1, 2 ..... m). The cost function attempts to

control the slewing states, such as angle and angular velocity,

at a given time k to some specified magnitude, while minimizing

the amplitudes of vibrational modes of flexible structures.

4.3 Constraints. The equality constraint functions are

provided by:

¢li(-_)=e(k+l)-_(k+l), for i=l ..... 2n (26)

The state vector _ at time k + l is governed by the discrete-

type first-order state equations as follows:

_(k+ 1) = Ae(k) +BE,,(k) +f;

Eo(k) = _C:(k)

where

[ 0

Equation (26) shows the first-order dynamic equations of mul-

tibody flexible structures, which must be satisfied by the fea-

sible design variables. Several inequality constraint functions

0k(2) defined in Eq. (23) are specified to bound the range of
each varying gear ratio and torque limitation of each motor.

The analysis described in this section can now be used to

bring about an integrated design of the noncircular gears as

well as the control gains so as to coordinate the actuating torque
during a slewing maneuver, with minimum flexural vibrations.

In the following section, three different simulations will be

implemented by using different mechanisms or control tech-

niques for stabilizing and tuning 90 deg-slew tasks of a planar

double-beam structure via this integrated mechanism and con-
trol design approach.

5 Simulations of a Flexible Articulated Double-Beam

This section includes simulations of 90 deg-slew maneuvers

implemented for a planar flexible double-beam, whose slewing

characteristics will be tuned in conjunction with the noncircular

gear. The flexural vibration of this double-beam structure is

characterized by applying two vibrational modes to each beam.

Table 1 Model parameters for a flexible articulated double-beam

a. neam motors:

(1)Beam I1 motor: (2)Beam |2 motor:

K=, ffi 0.0346 Nm/Amp Kt, = 9.3 x 10-_ Nm/Amp
Kit = 0.0342 Voh-sec/rad Kb= = 9.2 x l0 -_ Volt-sec/r_d
P_t = 4 Ohm R., = 1.1 Ohm

Ira, ffi 1.7 x lO-6 kgm_ I,., =12.3x10 -s k�m :_
Npx NI) _ =

b. St_l beam:
Length L = 1.0 m

Rigidity EI = 0.71 Nm 2
D_msity p = 0.47916 kg/m
Thielmess h = 0.041x10 -2 m

c, ParaJmeters of nonclrcular _e_" ratio:
(1)Beam I1 gears: (2)Beam |2 gears:

0,, = ¥ .. =

Table 2 Weighting and feedback gain matrices for a flexible articulated
double-beam

a. WeilShting matrlees:

State weighting matrix:

Q = Diag[ 250 100 10 10 10 10 250 100 10 10 10 10 ]

Input weighting matrix: R = [ 500, 500 ]

b. Output feedback j_aln matrix:

[-0.7018 -0.0547 0.5633 2.4793 -0.2597 1.3766
-- L 0.0864 -0.4439 0.0345 4.9427 -0.2104 -2.9872

-1.1214 -0.2117 0.8029 -0.6719 0.3141 0.0668]

-0.0844 -0.57.58 0.2477 -0.3145 0.2148 0.0_65J

Table 3 Optimization problem for nonclrcular gears and control gain
in a flexible articulated double-beam

Minimise: Eq. (25) _vit2__] ffi _,, = 5J500,_2 ffi =_,, = 4,500, and _3 ffi ¢_, - ,5000

Deslgn v_rlable_:

= [c,, q_, q_, c_, ¢{_*_,1, _(_), c(k+ z)] r ,*h_

ffi 1#,,,0),._, 4.,_,,_,,(_,,,(_.,,(h,, #,,, _,,_,]r

Subject to:

(1) _qttldiCy ¢ongraint f'anetiool: Eq. (28)

(2) Inequality _utr_int ftmctio_*:

,_(1) e:: o.] x ¢_ + __ 0,
_{_) -u_(k) + 1.5 > 0, $((_) = us(k) - 0.2 > 0.
Ss{_) -u=(k) + 1.s _ o, ¢,,)(_) u=(,_) 0.2 > 0

Startinl; point:

o _ 3_r _r 6x
= [i'8'T'_"H"-°7°2'°°_'-°°_'-0.,_4,-7._,4._,6,-x=.s_,-_._7,

-0.193,-17._48,-_.475,-2_.05,-1.121,-0,0_,-0.212,-0.576,-L867,0.210,

-x.r_, -o.ass,0._, -_.27s,-o._2x,-02_6,oas:_, o._ora,0._3, -o.oox2,o.ox_,
0.000_64, 0.2, 0.208, -0.0062, 0.0039, -0.005L 0.0016, 0.2, 0.208, -0.0064, 0.0039,

- 0.0049,0.0015, -0.088, 0.914,,-0.281, --0.1_, 0.3, -0.071! r.

Bound_ on de=,i_n variab_m:

(1) Uppe_boundn :

_m_ m [0.3,L_,0.16, L73,-0.09,0.13,--0.08,--0._4,-7._,5.1.--132.3,-18A,--0.08,-17.5,-_.2,

- 235.8, --1.63, -0.04, -0.36, -0.74, -1.6, 0.4, - 1.5. -0.6, 0.7, -3.0, -0.02, --0.0l, 24x [10]]r

(2)_boua& :

}mi_ = [0.29,1.86, 0.12,1.69, --0.69, 0.13, --0.08, -0.44. - 8.0, 4.7. --139.7, - 18.8, -0.3, --18.0, -_ &

-- 236.2, - 1.$3, -0.04, -0,26, -0.74, -2.0.0.01, -1.9, --1,0, 0.3, -2.4, -0.4, -0.4, 24 x [- 10]]r.

Three different cases will be considered for comparison. The

first case (case 1) is with 1:1 ratio circular gears; the second

(case 2), with the noncircular gears associated with a given

hyperbolic gear ratio as expressed in Section 2.1; and the third

(case 3), with the integration of mechanism and control design.

The parameters of the double-beam system are shown in

Table 1. Their weighting matrices and resulting regulator-type
control gain matrices derived in Section 3.2 are summarized

in Table 2. Moreover, the parameters of the noncircular gear

ratio as shown in Eq. (3) are given in Tables 1 for case 2. Based

on Eqs. (24) to (26), the problem definition for the optimal
design for the 90 deg-slew maneuver of a flexible double-beam

structure is summarized in Table 3. The results shown in Figs.
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5(a)-5(j), which are associated with 1:1 circular gears, dem-
onstrate the severe vibrations of the two beams at 0.64 seconds.

Therefore, the state vector _ and time-rate state vector _ at

that instant are selected as design variables, in conjunction
with the four parameters ct_, c_2, c:_, and c22 for two different

noncircular gear ratios, and the control gain matrix 1_(2× _2).

This give a total of fifty-two design variables for the optimi-

zation problem.
The quadratic cost function is constructed so as to suppress

vibrational modes of two flexible beams while simultaneously

keeping the two slewing angles 0_, 02 at 0.18117 rad and 0.090778

tad, respectively, and two angular velocities O,, 02 at 0.19956

rad/sec and 0.20797 rad/sec, respectively, which are related

to the severe vibrations at 0.64 seconds [see Figs. 5(a)-5(d)].

The equality constraint function are provided by twelve first-

order state equations 't,,{-2) (i = 1 ..... 12) which must always

be satisfied during the optimization process. Two inequality
constraint functions ¢1(2") and _2(_) are given to make two

gear ratios greater than 0.1. Four other inequality constraint
functions _if2) (i = 3, 4, 5, 6) are specified to bound the two

control torques to be between 0.2 and 1.5 Nm.

Based on these initial values of the design variables, the
starting value of cost function F(_) equals 21.772 while the

final cost is 0.0157333 at the minimum of F(_). Accordingly,

the optimal solution to the design parameters yields:

ct 1opt= 0.29, cl2op_ = 1.9, C2topt = 0.134177, Czzopt = 1.69386,

and

_opt = [-0.694 -0.084 -7.6 - 132.3 -0.288 -26.2

L 0.1332 0.439 4.70607 - 18.799 - 17.875 -236.191

Three simulation results for such a 90 deg-slew maneuver

are summarized and are characterized by lines #1, #2, and #3

in Figs. 5(a)-5(/). The results with the 1:1 circular gears are

i:,
-0 , 2 _ (4)s 6 7 _ ,0 i _ 3 _ s 6 7 s

$0 '50

""' i i _" (,;)i 6 ÷ ; " (,)

Control o s torque 2[J _'N L_-:-I.I
torque of " of beam #2 Ill \.N. 1
_m #1 . (Nm) tb_ ',.\ 1

(Nm) "O'SI (xIQ'I) fig __

If)

lr ............ ° ........... " "_t

(g) _h_

mode #2 .2_il_I_ _ mode #..l_l ]

"_ i _3 _, 6 _, _ "_ i i 3 A, s _ ÷
Tim(e')(sec) Tim_J'(sec)

Fig. 5 Simulation results of a planar flexible double-beam for a 90 deg-
slew maneuver

indicated by a thin solid line #1, the results for the general

noncircular gears by a dashed line #2, and the results for the

integrated mechanism and control design by a thick solid line

#3. Two flexible steel beams slew through 90.0 degrees in 8.0

seconds as shown in Figs. 5(a) and 5(b), respectively. Note that
the noncircular gears for optimal integrated design slow down

the beam slewing during the first 5-degrees of rotation, thereby

providing a smoother actuation to the desired final angle than

that in the presence of the circular gears.

In Figs. 5(c) and 5(d), the three results show that the beam

angular velocities damp out in approximately 8.0 seconds. The

higher frequency modes are clearly present in the results using

circular gears but are nearly vanishing in the other two results

for noncircular gears (lines #2 and #3). That indicates the

efficient suppression of structural vibration in the presence of

noncircular gears, in particular, the case subjected to optimal

integrated design (line #3). Also the slewing angular velocity

(lines #2 and #3) in the presence of noncircular gears is shown

to be smoother after 1.0 seconds which implies that the beam

slewing and vibrational motion have been tuned through the

use of the noncircular gears. Moreover, the peak magnitude

of the angular velocity is also significantly reduced through

this integrated design approach.

Figures 5(e) and 5(/) show the two control torques for beam

#1 and beam #2, respectively. The optimal integrated design

reduces the amplitudes of the first and second modes associated

- 1.533 -0.355 - 1.999 - 1.899 0.3 -0.399]

0.043 0.741 0.01 -0.606 -3.4 -0.399J (27)

with beam #1 by 21 percent compared to the unoptimized

noncircular gears (line #2) in Figs. 5(g) and 50). However,

compared to the results associated with the circular gears in

Figs. 5(g) and 5(0, the amplitudes of the first and second modes

for beam #1 are reduced by some 64 percent. In Figs. 5(h) and

5(./), the reduction of the amplitudes of beam #2 for the first

and second modes is about 38 percent when comparing the

results for the general noncircular gears (line #2). The reduction

is as high as 52 percent, when compared to the results associated

with the circular gears (line #1). As a result, the peak amplitude

of each mode as illustrated in Figs. 5(g)-5(j) is considerably

reduced, particularly, based on the optimal integrated design

approach.

6 Conclusion

Rapid and large slew-angle maneuvers almost always result

in severe flexural vibration that can barely subside within a

short period of time if not properly taken care of. An inves-

tigation of a novel integrated mechanism and control approach

has been conducted for tuning the slewing characteristics of

the flexible space structures such that the flexural vibrations

can be considerably suppressed through the incorporation of

a nonlinear mechanical element. The compromise between

mechanism parameters and control law is accomplished through

the use of optimization, for the sense of concurrent design. A

pair of noncircular gears have been designed to generate the

varying-ratio transmission for the slewing maneuvers of a

planar articulated double-beam structure. Such a noncircular

gear pair characterizes a pair of wrapped cylinders whose pro-

files have been synthesized to comply with the convexity cri-

terion in conjunction with a given parametric function of the

hyperbolic gear ratio. Then, an electro-mechanical-structural

system is constructed in an integrated fashion along with a

nonlinear transmission between the actuators and the space

structures. The slewing responses have been shown to be tuned

well, and the flexural vibrations are effectively suppressed by
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means of this concurrent mechanism and control design ap-
proach. These simulation results indicate the crucial role of

integrating mechanism and control in the design procedure for
slewing maneuvers of flexible structures.

A comparison of the simulation results with the noncircular

gears and the circular gears implies that the hyperbolic gear

ratio has been useful and practical for tuning slewing maneu-

vers and suppressing flexural vibrational motions so as to en-

hance system performances. Therefore, this synthesis scheme

paves the way for integrating mechanisms design with control

for rapid and large-angle slew maneuvers of the flexible space
structures.
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APPENDIX I

Noncircular Gearing Synthesis

The profiles of a pair of noncircular cylinders as shown in

Fig. 1 can be developed using the following gearing synthesis.

Figure 2 shows the cross section of two noncircular gears cen-

tered at O1 and 02 with the pitch radii r_ and r2, respectively.

Their angu.lar displacements are indicated by 01 and 02, angular
velocities Ot and O:, and angular acceleration 01 and 02, re-

spectively. The center distance O102 is denoted by C and the

pressure angle by ¢. The necessary condition for rolling contact
between two gears O1 and 02 as shown in Fig. 2 is that the

equivalent tracking arc length must satisfy: da = db _ r_dO_

= r2dO:. Suppose that the varying gear ratio Ng (02) is defined
as the ratio of the output to input angular velocities, then:

The pitch radii r_ and r2 of the two noncircular cylinders can
be shown to be:

rl = CNx(02) r2= C
1 + Ng(02)' l + N_(02_) (L 2)

The input angle 0t of the driving cylinder Ot can be computed

by integrating Eq. (I. 1) as given by:
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